[go: up one dir, main page]

login
A237112
Number of primes p < prime(n)/2 with p! a primitive root modulo prime(n).
7
0, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 6, 4, 2, 3, 3, 4, 7, 9, 5, 7, 5, 8, 4, 7, 6, 7, 8, 7, 11, 8, 9, 7, 13, 10, 16, 4, 7, 8, 13, 9, 8, 12, 17, 10, 14, 12, 4, 10, 14, 15, 18, 8, 9, 8, 8, 18, 6, 8, 7, 16, 9, 11, 21, 15
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 4. In other words, for any prime p > 7, there exists a prime q < p/2 such that q! is a primitive root modulo p.
See also A236306 for a similar conjecture.
LINKS
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(7) = 1 since 3 is a prime smaller than prime(7)/2 = 17/2 and 3! = 6 is a primitive root modulo prime(7) = 17.
a(9) = 1 since 5 is a prime smaller than prime(9)/2 = 23/2 and 5! = 120 is a primitive root modulo prime(9) = 23.
MATHEMATICA
f[k_]:=(Prime[k])!
dv[n_]:=Divisors[n]
Do[m=0; Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; m=m+1; Label[aa]; Continue, {k, 1, PrimePi[(Prime[n]-1)/2]}]; Print[n, " ", m]; Continue, {n, 1, 70}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 22 2014
STATUS
approved