[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum minus the lower median of every 2X2 subblock equal
9

%I #4 Jan 31 2014 07:35:05

%S 81,327,327,1386,2211,1386,6093,15254,15254,6093,27079,109205,168564,

%T 109205,27079,121590,786609,1949236,1949236,786609,121590,549173,

%U 5747502,22695802,36874967,22695802,5747502,549173,2495215,42215123,269108894

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum minus the lower median of every 2X2 subblock equal

%C Table starts

%C .......81.........327..........1386.............6093..............27079

%C ......327........2211.........15254...........109205.............786609

%C .....1386.......15254........168564..........1949236...........22695802

%C .....6093......109205.......1949236.........36874967..........701424751

%C ....27079......786609......22695802........701424751........21755065689

%C ...121590.....5747502.....269108894......13643698414.......692297987804

%C ...549173....42215123....3207539588.....266389315989.....22074170878628

%C ..2495215...312592339...38599508572....5258599354623....712496076337427

%C .11389842..2324534826..466275664500..104078580277828..23029391418201045

%C .52223381.17376767995.5664487537556.2072356525693189.749146158534878661

%H R. H. Hardin, <a href="/A236828/b236828.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 14]

%F k=2: [order 30]

%F k=3: [order 84]

%e Some solutions for n=3 k=4

%e ..0..0..2..0..2....0..0..1..2..2....0..0..0..1..0....0..0..2..0..1

%e ..0..1..1..1..1....0..1..0..1..0....1..0..1..0..0....0..2..0..2..0

%e ..1..2..0..0..2....0..1..0..0..1....1..2..1..0..1....0..0..2..0..2

%e ..2..2..1..1..1....1..2..1..1..0....1..0..1..0..1....2..0..0..2..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 31 2014