OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
B. K. Miceli, J, Remmel, Minimal Overlapping Embeddings and Exact Matches in Words, PU. M. A., Vol. 23 (2012), No. 3, pp. 291-315.
Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,0,0,0,-1,1,1).
FORMULA
G.f.: (1+x^9+x^10)/(1-2*x+x^9-x^10-x^11). - Alois P. Heinz, Jan 08 2014
MAPLE
a:= n-> coeff(series(-(x^10+x^9+1)/(x^11+x^10-x^9+2*x-1), x, n+1), x, n):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 08 2014
MATHEMATICA
a[n_ /; n<=10]:= 2^n; a[n_]:=a[n] =2*a[n-1] -a[n-9] +a[n-10] +a[n-11]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 18 2014 *)
LinearRecurrence[{2, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1}, {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, 40] (* Harvey P. Dale, May 17 2018 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+x^9+x^10)/(1-2*x+x^9-x^10-x^11)) \\ G. C. Greubel, Sep 14 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^9+x^10)/(1-2*x+x^9-x^10-x^11) )); // G. C. Greubel, Sep 14 2019
(Sage)
def A234592_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^9+x^10)/(1-2*x+x^9-x^10-x^11)).list()
A234592_list(40) # G. C. Greubel, Sep 14 2019
(GAP) a:=[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024];; for n in [12..40] do a[n]:=2*a[n-1]-a[n-9]+a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 14 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 01 2014
EXTENSIONS
a(17)-a(33) from Alois P. Heinz, Jan 08 2014
STATUS
approved