[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222730
Total sum T(n,k) of parts <= n of multiplicity k in all partitions of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
12
0, 0, 1, 3, 2, 1, 11, 6, 0, 1, 36, 10, 3, 0, 1, 79, 21, 3, 1, 0, 1, 186, 33, 7, 3, 1, 0, 1, 345, 59, 9, 4, 1, 1, 0, 1, 672, 89, 20, 4, 4, 1, 1, 0, 1, 1163, 145, 22, 11, 4, 2, 1, 1, 0, 1, 2026, 212, 44, 13, 6, 4, 2, 1, 1, 0, 1, 3273, 325, 56, 21, 8, 6, 2, 2, 1, 1, 0, 1
OFFSET
0,4
COMMENTS
For k > 0, column k is asymptotic to sqrt(3) * (2*k+1) * exp(Pi*sqrt(2*n/3)) / (2 * k^2 * (k+1)^2 * Pi^2) ~ 6 * (2*k+1) * n * p(n) / (k^2 * (k+1)^2 * Pi^2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, May 29 2018
LINKS
FORMULA
Sum_{k=0..n} k*T(n,k) = A066186(n) = n*A000041(n).
Sum_{k=1..n} T(n,k) = A014153(n-1) for n>0.
Sum_{k=0..n} T(n,k) = n*(n+1)/2*A000041(n) = A000217(n)*A000041(n).
(2 * Sum_{k=0..n} T(n,k)) / (Sum_{k=0..n} k*T(n,k)) = n+1 for n>0.
T(2*n+1,n+1) = A002865(n).
EXAMPLE
The partitions of n=4 are [1,1,1,1], [2,1,1], [2,2], [3,1], [4]. Parts <= 4 with multiplicity m=0 sum up to (2+3+4)+(3+4)+(1+3+4)+(2+4)+(1+2+3) = 36, for m=1 the sum is 2+(3+1)+4 = 10, for m=2 the sum is 1+2 = 3, for m=3 the sum is 0, for m=4 the sum is 1 => row 4 = [36, 10, 3, 0, 1].
Triangle T(n,k) begins:
0;
0, 1;
3, 2, 1;
11, 6, 0, 1;
36, 10, 3, 0, 1;
79, 21, 3, 1, 0, 1;
186, 33, 7, 3, 1, 0, 1;
345, 59, 9, 4, 1, 1, 0, 1;
672, 89, 20, 4, 4, 1, 1, 0, 1;
MAPLE
b:= proc(n, p) option remember; `if`(n=0 and p=0, [1, 0],
`if`(p=0, [0$(n+2)], add((l-> subsop(m+2=p*l[1]+l[m+2], l))
([b(n-p*m, p-1)[], 0$(p*m)]), m=0..n/p)))
end:
T:= n-> subsop(1=NULL, b(n, n))[]:
seq(T(n), n=0..14);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n - p*m, p-1] , Array[0&, p*m]]], {m, 0, n/p}]]]; Rest /@ Table[b[n, n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 03 2013
STATUS
approved