[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222738
Total sum of parts of multiplicity 10 in all partitions of n.
2
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 14, 16, 23, 28, 40, 49, 67, 82, 110, 135, 180, 220, 286, 349, 448, 548, 694, 846, 1061, 1290, 1608, 1948, 2406, 2909, 3566, 4300, 5242, 6298, 7637, 9149, 11044, 13189, 15847, 18872, 22582, 26817, 31967, 37858, 44970, 53116, 62894
OFFSET
10,5
LINKS
FORMULA
G.f.: (x^10/(1-x^10)^2-x^11/(1-x^11)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 21 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (24200 * Pi^2). - Vaclav Kotesovec, May 29 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=10, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=10..60);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[12]]; Table[a[n], {n, 10, 60}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A222730.
Sequence in context: A183567 A222710 A032278 * A005308 A151532 A056503
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 03 2013
STATUS
approved