[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221985
Partial sums of primes of the form (n+1)^11 - n^11.
1
313968931, 6926576780, 75545517171, 2332950292798, 26362646685307289, 157261278401555730, 11893629184686938707, 40838913299508512438, 270600054840430038249, 203248659302772610786786, 431646786892325713723157, 907860322879288498305774, 2535699587078276763578623
OFFSET
1,1
COMMENTS
Partial sums of primes equal to the difference of two consecutive eleventh powers (x+1)^11 - x^11 = 11x(x+1)(x^2+x+1)[ x(x+1)(x^2+x+1)(x^2+x+3)+1] +1 (A189055). Values of x = A211184. Number of primes equal (x+1)^11 - x^11 < 10^(n) in A221983. Partial sums of number of primes of the form (x+1)^11 - x^11 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^p - x^p for p = 5 (A221848) and p = 7 (A221979).
LINKS
MATHEMATICA
Accumulate[Select[Differences[Range[300]^11], PrimeQ]] (* Harvey P. Dale, Mar 24 2023 *)
CROSSREFS
Sequence in context: A034610 A015410 A189055 * A219784 A105005 A157789
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Feb 02 2013
STATUS
approved