[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220754
Number of ordered triples (a,b,c) of elements of the symmetric group S_n such that the triple a,b,c generates a transitive group.
2
1, 7, 194, 12858, 1647384, 361351560, 125116670160, 64439768489040, 47159227114392960, 47285264408385951360, 63057420721939066617600, 109118766834521171299756800, 239996135160204867851157273600, 659114500480471292127627441484800
OFFSET
1,2
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
FORMULA
E.g.f.: log(Sum_{n>=0} n!^2*x^n).
a(n) = (n!)^3 - (n-1)! * Sum_{k=1..n-1} a(k) * ((n-k)!)^2 / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020
MATHEMATICA
nn=14; b=Sum[n!^3 x^n/n!, {n, 0, nn}]; Drop[Range[0, nn]!CoefficientList[Series[Log[b], {x, 0, nn}], x], 1]
PROG
(PARI)
N = 66; x = 'x + O('x^N);
egf = log(sum(n=0, N, n!^2*x^n));
gf = serlaplace(egf);
v = Vec(gf)
/* Joerg Arndt, Apr 14 2013 */
CROSSREFS
Sequence in context: A012849 A308610 A277420 * A135809 A182268 A156359
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 13 2013
STATUS
approved