[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220431
Number of ways to write n=x+y (x>0, y>0) with 3x-1, 3x+1 and xy-1 all prime.
5
0, 0, 0, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 6, 1, 3, 6, 4, 3, 3, 2, 3, 4, 3, 4, 2, 3, 3, 5, 4, 4, 7, 1, 2, 5, 1, 5, 7, 4, 2, 3, 7, 4, 7, 2, 4, 7, 4, 4, 5, 2, 5, 8, 4, 3, 3, 5, 2, 8, 5, 4, 3, 10, 7, 8, 2, 3, 5, 5, 3, 6, 3, 3, 14, 4, 3, 12, 3, 7, 7, 5, 6, 8, 7, 5, 9, 9, 4, 4, 3, 6, 10, 8
OFFSET
1,5
COMMENTS
Conjecture: a(n)>0 for all n>3.
This has been verified for n up to 10^8, and it is stronger than A. Murthy's conjecture related to A109909.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Jul 26 2023
The conjecture implies the twin prime conjecture for the following reason: If x_1<...<x_k are positive integers and q_1,...,q_k are distinct primes greater than x_k, then by the Chinese Remainder Theorem there are infinitely many positive integers n such that x_i(n-x_i) == 1 (mod q_i).
Zhi-Wei Sun also made some similar conjectures. For example, any integer n>2 not equal to 63 can be written as x+y (x>0, y>0) with 2x-1, 2x+1 and 2xy+1 all prime.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Jul 26 2023
EXAMPLE
a(22)=1 since 22=4+18 with 3*4-1, 3*4+1 and 4*18-1 all prime.
MATHEMATICA
a[n_]:=a[n]=Sum[If[PrimeQ[3k-1]==True&&PrimeQ[3k+1]==True&&PrimeQ[k(n-k)-1]==True, 1, 0], {k, 1, n-1}]
Do[Print[n, " ", a[n]], {n, 1, 1000}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 14 2012
STATUS
approved