[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220183
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k triple descents (n>=0,0<=k<=n-3). We say that i is a triple descent of a permutation p if p(i) > p(i+1) > p(i+2) > p(i+3).
3
1, 1, 2, 6, 23, 1, 111, 8, 1, 642, 67, 10, 1, 4326, 602, 99, 12, 1, 33333, 5742, 1093, 137, 14, 1, 288901, 59504, 12425, 1852, 181, 16, 1, 2782082, 666834, 151635, 24970, 3029, 231, 18, 1, 29471046, 8054684, 1981499, 355906, 48455, 4902, 287, 20, 1
OFFSET
0,3
COMMENTS
Row sums = n!.
T(n,0) = A117158.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 210
FORMULA
E.g.f.: 1/(1 - x - Sum_{k,n} I(n,k)(y - 1)^k*x^n/n!) where I(n,k) is the coefficient of y^k*x^n in the ordinary generating function expansion of y x^4/(1 - y*x - y*x^2 - y*x^3) See Flajolet and Sedgewick reference in Links section.
EXAMPLE
: 1;
: 1;
: 2;
: 6;
: 23, 1;
: 111, 8, 1;
: 642, 67, 10, 1;
: 4326, 602, 99, 12, 1;
: 33333, 5742, 1093, 137, 14, 1;
T(5,1) = 8 because we have: (4,5,3,2,1), (3,5,4,2,1), (2,5,4,3,1), (5,4,3,1,2), (1,5,4,3,2), (5,4,2,1,3), (5,3,2,1,4), (4,3,2,1,5).
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
add(b(u-j, o+j-1, 1), j=1..u)+
add(b(u+j-1, o-j, [2, 3, 3][t])*`if`(t=3, x, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..14); # Alois P. Heinz, Oct 29 2013
MATHEMATICA
nn=10; u=y-1; a=Apply[Plus, Table[Normal[Series[y x^4/(1-y x - y x^2-y x^3), {x, 0, nn}]][[n]]/(n+3)!, {n, 1, nn-3}]]/.y->u; Range[0, nn]! CoefficientList[Series[1/(1-x-a), {x, 0, nn}], {x, y}]//Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Dec 12 2012
STATUS
approved