[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229502
Expansion of q * f(-q) * f(-q^4) * f(-q^16) * f(q, -q^3) in powers of q where f() is a Ramanujan theta function.
2
1, 0, -2, -2, 0, 2, 2, 4, -1, -2, 0, 0, -2, -4, 2, -4, -2, 2, 6, 4, 0, 2, -6, -4, 3, 2, 0, 4, 6, 0, -8, 0, -2, 0, -4, -2, 0, -6, 2, -4, 0, 4, 0, -4, 2, 12, 8, 8, 3, -6, 4, 0, 0, -8, 2, 0, -6, -6, 0, -4, -18, 0, 2, 8, 2, 0, -10, 4, 0, 4, 10, 0, 4, 6, 0, 0, 4
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..2500 (terms 1..77 from Michael Somos)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 16 sequence [0, -2, -2, -1, -2, -1, 0, -4, 0, -1, -2, -1, -2, -2, 0, -4, ...].
a(2^n) = A090132(n). a(16*n + 5) = a(16*n + 11) = 0. 2 * a(n) = A229893(8*n). a(2*n) = -2 * A229893(n).
EXAMPLE
G.f. = q - 2*q^3 - 2*q^4 + 2*q^6 + 2*q^7 + 4*q^8 - q^9 - 2*q^10 - 2*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3, -q^4] QPochhammer[ -q, -q^4] QPochhammer[ -q^4] QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^16], {q, 0, n}];
PROG
(PARI) {a(n) = my(A, m); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^16 + A) * sum( k=0, n, if( issquare( 8*k + 1, &m), (-1)^((m\2 + 2) \ 4) * x^k, 0), A), n))};
(Sage) CuspForms( Gamma1(16), 2, prec=78).0;
(Magma) Basis( CuspForms( Gamma1(16), 2), 78)[1];
CROSSREFS
Sequence in context: A177225 A236306 A153239 * A356359 A141661 A278521
KEYWORD
sign
AUTHOR
Michael Somos, Oct 02 2013
STATUS
approved