[go: up one dir, main page]

login
A229171
Define a sequence of real numbers by b(1)=e, b(n+1) = b(n) + log(b(n)); a(n) = smallest i such that b(i) >= e^n.
5
1, 5, 10, 20, 41, 86, 192, 441, 1039, 2493, 6072, 14960, 37199, 93193, 234957, 595562, 1516639, 3877905, 9950908, 25615654, 66127187, 171144672, 443966371, 1154115393, 3005950908
OFFSET
1,2
EXAMPLE
The initial terms of the b(n) sequence are approximately
2.71828182845904523536029, 3.71828182845904523536029, 5.03154351597726806940929, 6.64727031503970856301384, 8.54147660649653209023621, 10.6864105040926911986276, 13.0553833920216929230460, 15.6245839611886549261305, 18.3734295299727029212384, 21.2843351036624388705641, 24.3423064646657059114213, 27.5345223079930416816192, 30.8499628820185220765989, ...
b(5) is the first term >= e^2, so a(2) = 5.
MAPLE
Digits:=24;
e:=evalf(exp(1));
lis:=[e]; a:=e;
t1:=[1]; l:=2;
for i from 2 to 128 do
a:=evalf(a+log(a));
if a >= e^l then
l:=l+1; t1:=[op(t1), i]; fi;
lis:=[op(lis), a];
od:
lis;
map(floor, lis);
map(ceil, lis);
t1;
PROG
(PARI) n=1; m=exp(1); mn=m^n; for(i=1, 3005950908, if(m>=mn, print(n " " i); n++; mn=exp(1)^n); m=m+log(m)) /* Donovan Johnson, Oct 04 2013 */
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Sep 27 2013
EXTENSIONS
a(7)-a(25) from Donovan Johnson, Oct 04 2013
STATUS
approved