[go: up one dir, main page]

login
A229140
Smallest k such that k^2 + l^2 = n-th number expressible as sum of two squares (A001481).
0
0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 2, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 0, 1, 4, 2, 3, 5, 0, 1, 2, 6, 3, 5, 4, 0, 1, 2, 5, 3, 4, 7, 0, 1, 2, 5, 3, 7, 4, 6, 0, 1, 2, 8, 3, 6, 4, 0, 1, 5, 2, 7, 3, 6, 4, 9, 8, 0, 1, 2, 3, 6, 9, 4, 7, 5, 0, 1, 2, 9, 3, 8, 4, 7, 5, 0
OFFSET
1,6
COMMENTS
a(n) = 0 if A001481(n) is square. Conjecture: the values between two zeros are always distinct from each other.
EXAMPLE
The 6th number expressible as sum of two squares A001481(6) = 8 = 2^2 + 2^2, so a(6)=2.
PROG
(PARI) for(n=1, 300, s=sqrtint(n); forstep(i=s, 1, -1, if(issquare(n-i*i), print1(sqrtint(n-i*i), ", "); break)))
CROSSREFS
Sequence in context: A025842 A141100 A270655 * A280317 A283304 A058685
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 15 2013
STATUS
approved