[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229061
The (n+1)-th term of the n-th differences of the prime sequence.
1
2, 2, 2, 4, 8, -2, -48, -70, 0, 56, 308, 1014, 798, -2072, -5126, -2820, 434, -1340, 62902, 398032, 1247046, 2834160, 5266626, 7862442, 9510040, 13829302, 37650208, 111410394, 260524940, 468110450, 626899146, 481007522, -490911164, -3217336656, -8570944960
OFFSET
0,1
COMMENTS
All terms are even. The only zero seems to be a(8), corresponding to A036269(9).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..98 from Jean-François Alcover)
FORMULA
a(n) = A095195(2*n+1,n).
EXAMPLE
The sequences of differences begin:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
1, 2, 2, 4, 2, 4, 2, 4, 6, 2, ...
1, 0, 2, -2, 2, -2, 2, 2, -4, 4, ...
-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, ...
3, -6, 8, -8, 8, -4, -6, 14, -14, 6, ...
-9, 14, -16, 16, -12, -2, 20, -28, 20, -2, ...
23, -30, 32, -28, 10, 22, -48, 48, -22, -6, ...
-53, 62, -60, 38, 12, -70, 96, -70, 16, 16, ...
115, -122, 98, -26, -82, 166, -166, 86, 0, -28, ...
etc.
Main diagonal begins:
2, 2, 2, 4, 8, -2, -48, -70, 0, 56, ... .
MAPLE
T:= proc(n, k) option remember;
`if`(k=0, ithprime(n), T(n+1, k-1)-T(n, k-1))
end:
a:= n-> T(n+1, n):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 25 2013
MATHEMATICA
max = 100; row[n_] := Differences[Prime /@ Range[max], n]; Table[row[n], {n, 0, max}] // Diagonal
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved