[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228788
Decimal expansion of the algebraic integer 2*cos(Pi/34) of degree 16 = A055034(34) (over the rationals), the length ratio (smallest diagonal)/side of a regular 34-gon.
3
1, 9, 9, 1, 4, 6, 8, 3, 5, 2, 5, 9, 0, 0, 6, 9, 0, 4, 3, 7, 4, 2, 3, 8, 2, 3, 5, 7, 8, 1, 0, 9, 6, 3, 5, 6, 7, 8, 0, 5, 4, 4, 9, 2, 3, 5, 2, 3, 2, 5, 9, 8, 3, 9, 6, 7, 4, 3, 8, 0, 6, 0, 3, 2, 6, 1, 7, 4, 1, 4, 3, 1, 8, 8, 3, 5, 7, 0, 6, 8, 1, 6, 0, 7, 5, 0, 9, 6, 8, 4, 9, 4, 7, 4, 0, 2, 5, 9, 6, 8, 3, 4, 0, 9
OFFSET
1,2
COMMENTS
rho(34):= 2*cos(Pi/34) is used in the algebraic number field Q(rho(34)) of degree 16 (see A187360) in which s(17) = 2*cos(Pi/17) (for its decimal expansion see A228787), the length ratio side/R of a regular 17-gon inscribed in a circle of radius R, is an integer. See A228787 for this expansion.
Gauss' formula for cos(2*Pi/17), given in A210644, can be inserted into rho(34) = sqrt(2+sqrt(2+2*cos(2*Pi/17))).
The minimal polynomial of rho(34) is 17 - 204*x^2 + 714*x^4 - 1122*x^6 + 935*x^8 - 442*x^10 + 119*x^12 - 17*x^14 + x^16 (row n=34 polynomial of A187360).
The continued fraction expansion starts with 1; 1, 116, 4, 1, 2, 1, 20, 2, 2, 1, 7, 10, 2, 2, 1, 3, 6, 1, 4, 4, 15, ...
FORMULA
2*cos(Pi/34) = 1.99146835259006904374238235781096...
MATHEMATICA
RealDigits[2 Cos[Pi/34], 10, 111][[1]] (* Robert G. Wilson v, Jul 28 2014 *)
PROG
(PARI) 2*cos(Pi/34) \\ Charles R Greathouse IV, Nov 12 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Oct 07 2013
STATUS
approved