[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228713
G.f. satisfies: A(x) = -1 + x + A(x)^3 + 1/A(x)^3.
2
1, 1, 9, 153, 3255, 77577, 1981126, 53004150, 1466474670, 41614008260, 1204502970165, 35423409847293, 1055483705642665, 31795106260418235, 966712615856886300, 29627547245811631436, 914323870342824231237, 28388314363804297836633, 886151892114118028053027
OFFSET
0,3
COMMENTS
Compare to the trivial identity:
G(x) = -1 + x + G(x) + 1/G(x) is satisfied when G(x) = 1/(1-x).
LINKS
Vaclav Kotesovec, Recurrence
FORMULA
G.f. satisfies: 0 = 1 - (1-x)*A(x)^3 - A(x)^4 + A(x)^6.
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 34.05333752261152244... is the root of the equation 729 - 4374*d + 2079*d^2 + 20844*d^3 + 1431*d^4 - 56214*d^5 + 1649*d^6 = 0 and c = 0.03096414033189124248457768352179346154431144356... - Vaclav Kotesovec, Sep 19 2013
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 153*x^3 + 3255*x^4 + 77577*x^5 + 1981126*x^6 +...
where
A(x)^3 = 1 + 3*x + 30*x^2 + 514*x^3 + 10953*x^4 + 261225*x^5 + 6673593*x^6 +...
1/A(x)^3 = 1 - 3*x - 21*x^2 - 361*x^3 - 7698*x^4 - 183648*x^5 - 4692467*x^6 -...
so that A(x) = -1 + x + A(x)^3 + 1/A(x)^3.
MAPLE
a:= n-> coeff(series(RootOf(A= -1+x+A^3+1/A^3, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 19 2013
MATHEMATICA
nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1 - (1-x)*AGF^3 - AGF^4 + AGF^6, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=-1+x + A^3 + 1/(A^3 +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A228714.
Sequence in context: A012017 A130980 A133309 * A151835 A217822 A217823
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2013
STATUS
approved