[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228707
G.f.: (1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2).
1
1, 1, 1, 3, 6, 8, 10, 16, 24, 29, 35, 47, 61, 72, 84, 104, 127, 145, 165, 195, 228, 256, 286, 328, 374, 413, 455, 511, 571, 624, 680, 752, 829, 897, 969, 1059, 1154, 1240, 1330, 1440, 1556, 1661, 1771, 1903, 2041, 2168, 2300, 2456, 2619, 2769
OFFSET
0,4
LINKS
E. Kirkman, J. Kuzmanovich and J. J. Zhang, Invariants of (-1)-Skew Polynomial Rings under Permutation Representations, arXiv preprint arXiv:1305.3973, 2013
FORMULA
G.f.: (1-x+x^2)*(1-2 *x+2*x^2-x^3+2*x^4-2*x^5+x^6)/((1+x^2)^2*(1-x)^4*(1+x^4)).
MATHEMATICA
CoefficientList[Series[(1 - 3 x + 5 x^2 - 5 x^3 + 5 x^4 - 5 x^5 + 5 x^6 - 3 x^7 + x^8) / ((1 - x)^4 (1 + x^4) (1 + x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2))); // Vincenzo Librandi, Sep 07 2013
CROSSREFS
Sequence in context: A121741 A343409 A043549 * A290218 A310135 A352341
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 06 2013
STATUS
approved