[go: up one dir, main page]

login
A228553
Sum of the products formed by multiplying together the smaller and larger parts of each Goldbach partition of 2n.
4
0, 4, 9, 15, 46, 35, 82, 94, 142, 142, 263, 357, 371, 302, 591, 334, 780, 980, 578, 821, 1340, 785, 1356, 1987, 1512, 1353, 2677, 1421, 2320, 4242, 1955, 2803, 4362, 1574, 4021, 5298, 4177, 4159, 6731, 4132, 5593, 9808
OFFSET
1,2
COMMENTS
Since the product of each prime pair is semiprime and since we are adding A045917(n) of these, a(n) is expressible as the sum of exactly A045917(n) distinct semiprimes.
FORMULA
a(n) = Sum_{i=2..n} c(i) * c(2*n-i) * i * (2*n-i), where c = A010051.
a(n) = Sum_{k=(n^2-n+2)/2..(n^2+n-2)/2} c(A105020(k)) * A105020(k), where c = A064911. - Wesley Ivan Hurt, Sep 19 2021
EXAMPLE
a(5) = 46. 2*5 = 10 has two Goldbach partitions: (7,3) and (5,5). Taking the products of the larger and smaller parts of these partitions and adding, we get 7*3 + 5*5 = 46.
MAPLE
with(numtheory); seq(sum( (2*k*i-i^2) * (pi(i)-pi(i-1)) * (pi(2*k-i)-pi(2*k-i-1)), i=2..k), k=1..70);
# Alternative:
f:= proc(n)
local S;
S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i, i=3..n, 2)]);
add(t*(2*n-t), t=S)
end proc:
f(2):= 4:
map(f, [$1..200]); # Robert Israel, Nov 29 2020
MATHEMATICA
c[n_] := Boole[PrimeQ[n]];
a[n_] := Sum[c[i]*c[2n-i]*i*(2n-i), {i, 2, n}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 25 2013
STATUS
approved