OFFSET
1,4
COMMENTS
If n is a prime, p, then a(p) = 1. Proof: a(p) = sigma(p^2) + phi(p^2) - 2p^2 = p^2 + p + 1 + p^2*( 1-(1/p) ) - 2p^2 = p^2 + p + 1 + p^2 - p - 2p^2 = 1.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
FORMULA
EXAMPLE
a(6) = 31; sigma(6^2) + phi(6^2) - 2*6^2 = 91 + 12 - 72 = 31.
MAPLE
with(numtheory); seq(sigma(k^2) + phi(k^2) - 2*k^2, k=1..20);
MATHEMATICA
Table[DivisorSigma[1, n^2] + EulerPhi[n^2] - 2*n^2, {n, 100}]
PROG
(PARI) vector(100, n, sigma(n^2)+eulerphi(n^2)-2*n^2) \\ Altug Alkan, Oct 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 23 2013
EXTENSIONS
More terms from Antti Karttunen, Oct 30 2017
STATUS
approved