[go: up one dir, main page]

login
A228299
Composite squarefree numbers n such that p+d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.
16
21098, 134930, 343027, 361730, 387127, 751394, 793595, 1344517, 1430449, 1579394, 1794854, 3542797, 5022254, 7930117, 9241627, 12122947, 21089129, 21928717, 49825117, 70233329, 78795074, 90079589, 95208734, 110995807, 124648303, 124964219, 144871634
OFFSET
1,1
COMMENTS
Subsequence of A120944.
LINKS
EXAMPLE
Prime factors of 21098 are 2, 7, 11 and 137 while d(21098) = 16. We have that 21098 + 16 = 21114 and 21114 / (2 + 16) = 1173, 21114 / (7 + 16) = 918, 21114 / (11 + 16) = 782 and 21114 / (137 + 16) = 138.
MAPLE
with (numtheory); P:=proc(q) local a, i, ok, n;
for n from 1 to q do if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
else if not type((n+tau(n))/(a[i][1]+tau(n)), integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Aug 20 2013
EXTENSIONS
More terms from Michel Marcus, Sep 21 2013
Deleted first term from Paolo P. Lava, Sep 23 2013
STATUS
approved