Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 13 2015 00:54:43
%S 5,13,112,587,3631,21166,126119,745178,4416695,26150120,154877307,
%T 917205757,5431915952,32169045631,190512481196,1128258633821,
%U 6681806858103,39571194265886,234349700556332,1387872742075595
%N Number of nX5 binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or nw-se diagonally.
%C Column 5 of A228285.
%H R. H. Hardin, <a href="/A228280/b228280.txt">Table of n, a(n) for n = 1..210</a>
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1, 21, 48, 14, -69, -38, 68, 13, -57, 37, -8, -2, 1).
%F a(n) = a(n-1) +21*a(n-2) +48*a(n-3) +14*a(n-4) -69*a(n-5) -38*a(n-6) +68*a(n-7) +13*a(n-8) -57*a(n-9) +37*a(n-10) -8*a(n-11) -2*a(n-12) +a(n-13)
%F G.f.: x*(5 + 8*x - 6*x^2 - 38*x^3 - 2*x^4 - 5*x^5 + 45*x^6 - 51*x^7 + 26*x^8 - 4*x^9 - 2*x^10 + x^11)/((1 + 2*x - 2*x^3 + x^4)*(1 - 3*x - 15*x^2 - 16*x^3 + 11*x^4 + 20*x^5 - 19*x^6 + 8*x^7 - x^9)). - _M. F. Hasler_, Apr 27 2014
%e Some solutions for n=4
%e ..1..0..1..0..0....1..0..0..0..0....1..0..1..0..0....1..0..0..0..0
%e ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..0....0..0..0..0..1
%e ..0..0..0..1..0....0..0..0..0..0....0..1..0..1..0....0..1..0..1..0
%e ..0..1..0..0..0....0..0..1..0..1....1..0..0..0..0....1..0..0..0..0
%Y See A228277-A228285, especially the latter.
%Y See also the k=5 variants of A228390, A228476, A228506 etc.
%K nonn
%O 1,1
%A _R. H. Hardin_ Aug 19 2013
%E Edited by _N. J. A. Sloane_, Aug 22 2013