OFFSET
1,1
COMMENTS
Coefficients are A= 0.1641239, B= 10.0861, C(0)=0 .9976796712309498, C(1)= 7.445960495e-02, C(2)= -6.73751166802e-03.
To obtain this sequence, remark first that the square root of the first values of pi(10^n) (A006880) (see (A221205)) are close to odd indices Fibonacci numbers F[2n+1](1). Switching to odd indices Fibonacci polynomials F[2n+1](x), one obtains the sequence a(n) by computing x as a function of n such that (F[2n+1](x))^2 fit the values of pi(10^n) for 1<=n<=25.
FORMULA
a(n) = round((F[2n+1](Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i))))^2).
EXAMPLE
For n =1, F[3](x) = x^2+1; replace x by Sum_{i=0..2} (C(i)*(log(log(A*(B+1))))^(2i))= 1.016825… to obtain a(1)= round((F[3]( 1.016825…))^2)=4.
MAPLE
with(combinat, fibonacci): A:= 0.1641239: B:= 10.0861: C(0):= .9976796712309498: C(1):=7.445960495E-02: C(2):= -6.73751166802E-03: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^(2*i), i=0..2): seq(round(fibonacci(2*n+1, c(n))^2), n=1..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Jul 19 2013
STATUS
approved