[go: up one dir, main page]

login
A227511
Triangle read by rows: Number of n-step self-avoiding walks on f.c.c. lattice ending at point with x = k.
5
1, 4, 4, 36, 32, 16, 308, 292, 192, 64, 2764, 2672, 2016, 1024, 256, 25404, 24780, 20160, 12480, 5120, 1024, 237164, 232512, 197940, 137472, 71680, 24576, 4096, 2237948, 2201948, 1930944, 1443616, 869376, 390144, 114688, 16384, 21286548, 20997008, 18805488, 14786176
OFFSET
0,2
COMMENTS
The number of walks ending with x = -k is the same as the number ending with x = k.
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 0..135 (terms 0..77 from Joseph Myers)
J. L. Martin, The exact enumeration of self-avoiding walks on a lattice, Proc. Camb. Phil. Soc., 58 (1962), 92-101.
EXAMPLE
Initial rows (paths of length 0, 1, 2, ...):
{ 1 };
{ 4, 4 };
{ 36, 32, 16 };
{ 308, 292, 192, 64 }.
CROSSREFS
KEYWORD
nonn,walk,tabl
AUTHOR
Joseph Myers, Jul 14 2013
STATUS
approved