[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227397
Related to Pisano periods: Numbers k such that the period of Fibonacci numbers mod k equals k+2.
1
4, 34, 46, 94, 106, 166, 226, 274, 334, 346, 394, 454, 514, 526, 586, 634, 694, 706, 766, 886, 934, 1006, 1126, 1174, 1186, 1234, 1294, 1306, 1354, 1366, 1486, 1546, 1654, 1714, 1726, 1774, 1894, 1954, 1966, 2026, 2326, 2374, 2386, 2434, 2566, 2614, 2734, 2746
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A220168, where k divides the Fibonacci number F(k+2). There is no discernible pattern among the terms of A220168 terms that are not in this sequence.
All terms are 2 less than a multiple of 6, and all except the first term (4) are 2 less than a multiple of 12.
LINKS
EXAMPLE
The Pisano period (A001175) for dividing the Fibonacci numbers (A000045) by 4 is 6; 6 = 4 + 2, so 4 is a term.
The Pisano period for the Fibonacci numbers mod 34 is 36; 36 = 34 + 2, so 34 is a term.
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Goers, Sep 20 2013
STATUS
approved