[go: up one dir, main page]

login
A227359
Natural numbers that are not of the form (k +- sum of binary digits of k) for any k.
4
6, 13, 21, 30, 37, 48, 51, 80, 83, 111, 121, 133, 144, 147, 175, 185, 192, 207, 217, 226, 233, 242, 245, 248, 250, 272, 275, 303, 313, 320, 335, 345, 354, 361, 370, 373, 376, 378, 387, 399, 409, 418, 425, 434, 437, 440, 442, 457, 466, 469, 472, 474, 481, 488, 490, 497, 505, 507, 528, 531, 559, 569, 576, 591, 601, 610, 617
OFFSET
1,1
COMMENTS
This sequence is the intersection of sets A010061 and A055938, where: set A010061 is NONE of ( k + count of set binary bits(k) ), and set A055938 is NONE of ( k - count of set binary bits(k) ), for any k.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 1, 9, 127, 1362, 12921, 128429, 1261747, 12554142, 125697648, 1257065977, ... . Conjecture: This sequence has an asymptotic density (1/2) * A242403 = 0.126330... . - Amiram Eldar, Oct 02 2022
LINKS
EXAMPLE
Find the list of values not defined by:
V = i +- count of set binary bits(i), for any integer i.
Assume that setbits(n) returns the count of set binary digits of n.
A227359 sample: 6,13,21,30,37,48,51,80,83,111, ...
0 +- setbits(0) = 0 therefore 0 does not make the list
1 +- setbits(1) = 0,2 therefore 0 and 2 do not make the list
2 +- setbits(2) = 1,3 therefore 1 and 3 do not make the list
3 +- setbits(3) = 1,5 therefore 1 and 5 do not make the list
4 +- setbits(4) = 3,5 ...
5 +- setbits(5) = 3,7 therefore 3 and 7 do not make the list
6 +- setbits(6) = 4,8 therefore 4 and 8 do not make the list
7 +- setbits(7) = 4,10 therefore 4 and 10 do not make the list
8 +- setbits(8) = 7,9 therefore 7 and 9 do not make the list
6 and 13 did make the list because there is no solution for
6 = i +- setbits(i), nor
13 = i +- setbits(i), for any integer i.
PROG
See link.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Andres M. Torres, Jul 08 2013
STATUS
approved