[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226997
Irregular triangle read by rows: T(n,k) is the number of distinct tilings by squares of an n X n square lattice that contain k nodes unconnected to any of their neighbors.
2
1, 1, 1, 1, 4, 0, 0, 1, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 25, 228, 964, 2003, 2178, 1842, 1626, 725, 290, 376, 184, 140, 76, 4, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 36, 520, 3920, 16859, 42944, 67312
OFFSET
1,5
COMMENTS
The n-th row contains (n-1)^2 + 1 elements.
LINKS
Alois P. Heinz, Rows n = 1..16, flattened (Rows n = 1..7 from Christopher Hunt Gribble)
FORMULA
Sum_{k=0..(n-1)^2} T(n,k) = A045846(n).
From Christopher Hunt Gribble, Jul 02 2013: (Start)
It appears that:
T(n,1) = (n-1)^2, n>1 = A000290(n-1).
T(n,2) = (n-2)(n-3)(n^2+n-4)/2, n>2 = A061995(n-1).
T(n,3) = (n-2)(n-3)(n^4-n^3-23n^2+15n+140)/6, n>2 = A061996(n-1).
T(n,4) = (n^8 - 8n^7 - 26*n^6 + 340*n^5 - 105*n^4 - 4708*n^3 + 6814*n^2 + 20852*n - 40248)/24, n>3. (End)
EXAMPLE
For n = 3, there are 4 tilings that contain 1 isolated node, so T(3,1) = 4. A 2 X 2 square contains 1 isolated node. Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors. Then the 4 tilings are:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The irregular triangle begins:
\ k 0 1 2 3 4 5 6 7 8 9 ...
n
1 1
2 1 1
3 1 4 0 0 1
4 1 9 16 8 5 0 0 0 0 1
5 1 16 78 140 88 44 68 32 0 4 ...
6 1 25 228 964 2003 2178 1842 1626 725 290 ...
7 1 36 520 3920 16859 42944 67312 72980 69741 62952 ...
MAPLE
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+x^((i-k)^2)
*b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
od; expand(s)
fi
end:
T:= n-> (l-> seq(coeff(l, x, i), i=0..degree(l)))(b(n, [0$n])):
seq(T(n), n=1..9); # Alois P. Heinz, Jun 27 2013
CROSSREFS
Cf. A045846.
Sequence in context: A327517 A376504 A151905 * A245965 A078669 A229655
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved