OFFSET
1,2
COMMENTS
Note that many of these triples have the form 1!, (k^2-1)!, (k^2)! whose product is trivially a square equal to ((k^2-1)! k)^2. [Corrected by Jonathan Sondow, Apr 01 2017]
This is a three-column table read by rows. - N. J. A. Sloane, Apr 01 2017
LINKS
A. Dujella, F. Najman, N. Saradha and T. N. Shorey, Products of three factorials, Publ. Math. Debrecen 85/1-2 (2014), 123-130.
EXAMPLE
The first triple is (1,3,4) because 1! 3! 4! = 144 = 12^2.
MATHEMATICA
nn = 100; t = {}; Do[If[i + j + k <= nn + 3 && IntegerQ[Sqrt[i! j! k!]], AppendTo[t, {i, j, k}]], {i, nn}, {j, i + 1, nn}, {k, j + 1, nn}]; Sort[t, #1[[1]] + #1[[2]] + #1[[3]] < #2[[1]] + #2[[2]] + #2[[3]] &]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Jun 27 2013
STATUS
approved