[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224002
Number of 4 X n 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.
1
81, 793, 2980, 7927, 17929, 36845, 71061, 130767, 231730, 397675, 663404, 1078800, 1713877, 2665051, 4062821, 6081063, 8948154, 12960157, 18496312, 26037092, 36185097, 49689073, 67471357, 90659063, 120619338, 158999031, 207769132
OFFSET
1,1
COMMENTS
Row 4 of A223999.
LINKS
FORMULA
Empirical: a(n) = (1/2880)*n^8 + (1/180)*n^7 + (25/288)*n^6 + (169/180)*n^5 + (18649/2880)*n^4 + (4247/90)*n^3 + (2719/16)*n^2 - (6649/30)*n - 17 for n>4.
Conjectures from Colin Barker, Aug 25 2018: (Start)
G.f.: x*(81 + 64*x - 1241*x^2 + 2851*x^3 - 2540*x^4 + 248*x^5 + 1398*x^6 - 1380*x^7 + 796*x^8 - 347*x^9 + 88*x^10 - x^11 - 3*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....1..1..1....0..0..1....0..1..1....0..1..2....1..1..1....0..1..1
..0..2..2....1..1..1....0..1..1....1..1..1....0..1..1....1..1..2....1..1..1
..1..1..2....0..1..2....0..0..1....1..2..2....0..0..2....0..2..2....0..1..1
..1..2..2....0..0..1....0..0..0....0..2..2....0..0..1....2..2..2....0..0..1
CROSSREFS
Cf. A223999.
Sequence in context: A066431 A206086 A356534 * A253461 A247842 A273233
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 30 2013
STATUS
approved