OFFSET
1,1
COMMENTS
LINKS
Clark Kimberling, Antidiagonals n = 1..80, flattened
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((3*n-1) + (3*n+2)*x - (6*n-8)*x^2) and g(x) = (1-x)^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
2....13....42....98....190
8....34....87....176...310
14...55....132...254...430
20...76....177...332...550
26...97....222...410...670
32...118...267...488...790
MATHEMATICA
b[n_]:=3n-1; c[n_]:=3n-2;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213825 *)
d=Table[t[n, n], {n, 1, 40}] (* A213826 *)
d/2 (* A024215 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
s1=Table[s[n], {n, 1, 50}] (* A213827 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jul 04 2012
STATUS
approved