[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213679
Total sum of parts <= n of multiplicity 0 in all partitions of n.
2
0, 0, 3, 11, 36, 79, 186, 345, 672, 1163, 2026, 3273, 5388, 8301, 12912, 19349, 28961, 42071, 61253, 86921, 123404, 171972, 239020, 327386, 447743, 604255, 813645, 1084657, 1441643, 1899450, 2496510, 3255653, 4234822, 5472953, 7053217, 9038784, 11554020
OFFSET
0,3
LINKS
FORMULA
a(n) = A000217(n)*A000041(n)-A014153(n-1).
EXAMPLE
The partitions of n=4 are [1,1,1,1], [2,1,1], [2,2], [3,1], [4]. Parts <= 4 with multiplicity m=0 sum up to (2+3+4)+(3+4)+(1+3+4)+(2+4)+(1+2+3) = 36, thus a(4) = 36.
MAPLE
b:= proc(n, p) option remember; `if`(n=0 and p=0, [1, 0], `if`(p<1, [0$2],
add((l->`if`(m=0, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..55);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=0 of A222730.
Sequence in context: A119143 A119092 A119177 * A297577 A119126 A119088
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 04 2013
STATUS
approved