[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213385
a(n) = number of refinements of the partition n^1.
(Formerly N0320)
6
1, 2, 3, 7, 15, 43, 131, 468, 1776, 7559, 34022, 166749, 853823, 4682358, 26720781, 161074458, 1004485751, 6576974188, 44322716809, 311440019349, 2247888977510, 16819336465164, 128915407382036, 1021269823516449, 8261243728564640, 68848043979970646
OFFSET
1,2
COMMENTS
Consider the ranked poset L(n) of partitions defined in A002846. Then a(n) is the total number of paths of all lengths 0,1,...,n-1 that start at n^1 and end at a node in the poset.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence labeled H.
EXAMPLE
Referring to the ranked poset L(5) shown in the example in A002846, there are 15 paths that start at ooooo:
end point / number of paths
ooooo / 1
o oooo / 1
oo ooo / 1
o o ooo / 2
o oo oo / 2
o o o oo / 4
o o o o o / 4
Total a(5) = 15.
MAPLE
b:= proc(l) option remember; local n, i, j, t; n:=nops(l);
`if`(l[n]=1 and {l[1..n-1][]} minus {0}={}, 1,
add(`if`(l[i]=0, 0, add(`if`(l[j]=0 or i=j and l[j]<2, 0,
b([seq(`if`(t>n, 0, l[t])-`if`(t=i and t=j, 2, `if`(t=i or t=j,
1, `if`(t=i+j, -1, 0))), t=1..max(n, i+j))])), j=i..n)), i=1..n))
end:
g:= proc(n, i, l)
`if`(n=0 and i=0, b(l), `if`(i=1, b([n, l[]]), add(g(n-i*j, i-1,
`if`(l=[] and j=0, l, [j, l[]])), j=0..n/i)))
end:
a:= n-> g(n, n, []):
seq(a(n), n=1..25); # Alois P. Heinz, Jun 11 2012
MATHEMATICA
b[l_List] := b[l] = Module[{n, i, j, t}, n = Length[l]; If[l[[n]] == 1 && Union[ l[[1 ;; n-1]]] ~Complement~ {0} == {}, 1, Sum[If[l[[i]] == 0, 0, Sum[If[l[[j]] == 0 || i == j && l[[j]]<2, 0, b[Table[If[t>n, 0, l[[t]]] - Which[t == i && t == j, 2, t == i || t == j, 1, t == i+j, -1, True, 0], {t, 1, Max[n, i+j]}]]], {j, i, n}] ], {i, 1, n}]]]; g[n_, i_, l_List] := If[n == 0 && i == 0, b[l], If[i == 1, b[ Join[{n}, l]], Sum[g[n-i*j, i-1, If[l == {} && j == 0, l, Join[{j}, l]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2012
EXTENSIONS
Definition clarified by David Applegate, Jun 10 2012
More terms from Alois P. Heinz, Jun 11 2012
Edited by Alois P. Heinz at the suggestion of Gus Wiseman, May 02 2016
STATUS
approved