[go: up one dir, main page]

login
A213365
Numbers n such that 3n is a partition number.
11
1, 5, 10, 14, 45, 77, 99, 209, 264, 334, 525, 812, 1868, 2783, 3381, 4961, 10395, 12446, 14861, 21087, 35186, 49091, 79981, 93863, 109977, 204718, 373835, 501833, 1029245, 1362656, 1565735, 2706088, 5265492, 14702703, 44410310, 80421793, 101600455, 128092112, 143716463, 226634401, 354714817, 947313500, 1054375784
OFFSET
1,2
COMMENTS
Is this sequence infinite? Klarreich writes: no one has proved whether there are infinitely many partition numbers divisible by 3 (see Jonathan Vos Post's comment in A000041 and A087183). - Omar E. Pol, Jan 14 2014
FORMULA
a(j) = A087183(j)/3.
MATHEMATICA
Select[PartitionsP[Range[300]], Mod[#, 3] == 0 &]/3 (* Omar E. Pol, May 07 2013 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 08 2013
EXTENSIONS
a(35)-a(43) from R. J. Mathar, May 05 2013
STATUS
approved