[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212914
E.g.f. satisfies: A(x) = exp( Integral 1 + x*A(x)^3 dx ), where the constant of integration is zero.
3
1, 1, 2, 10, 70, 614, 6694, 86950, 1306238, 22301182, 426568582, 9034270022, 209865005182, 5305633245502, 145015267113254, 4261031552171302, 133942497987918142, 4485091167113782334, 159382471398546619270, 5990690461349053361350, 237457043901226772247998
OFFSET
0,3
COMMENTS
Compare to the identities:
(1) F(x) = exp( Integral 1 + x*F(x) dx ) when F(x) = 1/(1-x),
(2) G(x) = exp( Integral x*G(x)^3 dx ) when G(x) = 1/(1-3*x^2/2)^(1/3).
In general, if e.g.f. satisfies: A(x) = exp( Integral(1 + x*A(x)^p) dx ), p>1, and the constant of integration is zero, then A(x) = (1/p + (p-1)/(exp(p*x)*p) - x)^(-1/p), and a(n) ~ n! * p^(n+1/p) / (Gamma(1/p) * n^(1-1/p)* (1+LambertW((p-1)*exp(-1)))^(n+2/p)). - Vaclav Kotesovec, Jul 16 2014
FORMULA
E.g.f.: 3^(1/3)*exp(x)/(exp(3*x) - 3*exp(3*x)*x + 2)^(1/3). - Vaclav Kotesovec, Jan 05 2014
a(n) ~ 3^(n+5/6) * n^(n-1/6) * Gamma(2/3) / (sqrt(2*Pi) * exp(n) * (1+LambertW(2*exp(-1)))^(n+2/3)). - Vaclav Kotesovec, Jan 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 70*x^4/4! + 614*x^5/5! + 6694*x^6/6! + ...
such that, by definition,
log(A(x)) = x + x^2/2! + 6*x^3/3! + 36*x^4/4! + 288*x^5/5! + 2970*x^6/6! + 36612*x^7/7! + ...
Related expansions:
x*A(x)^3 = x + 6*x^2/2! + 36*x^3/3! + 288*x^4/4! + 2970*x^5/5! + 36612*x^6/6! + ...
A(x)^3 = 1 + 3*x + 12*x^2/2! + 72*x^3/3! + 594*x^4/4! + 6102*x^5/5! + 75006*x^6/6! + ...
MATHEMATICA
CoefficientList[Series[3^(1/3)*E^x/(E^(3*x) - 3*E^(3*x)*x + 2)^(1/3), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 05 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(1+x*A^3)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 30 2012
STATUS
approved