OFFSET
1,2
COMMENTS
FORMULA
T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (2*n^2 - 2*n - 1)*x + ((n-1)^2)*x^2 and g(x) = (1 - x)^5.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....6....20....50....105....196...336
4....17...46....100...190....329...532
9....34...84....170...305....504...784
16...57...134...260...450....721...1092
25...86...196...370...625....980...1456
...
T(5,1) = (1)**(25) = 25
T(5,2) = (1,2)**(25,36) = 1*36+2*25 = 86
T(5,3) = (1,2,3)**(25,36,49) = 1*49+2*36+3*25 = 196
MATHEMATICA
b[n_] := n; c[n_] := n^2
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A212891 *)
d = Table[t[n, n], {n, 1, 40}] (* A213436 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A024166 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Jun 16 2012
STATUS
approved