[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212860
Number of 7 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
8
1, 1, 127, 275563, 4479288703, 347190069843751, 96426023622482278621, 78785944892341703819175577, 163925632052722656731213188429183, 777880066963402408939826643081996101263, 7717574897043522397037273525233635595811018377
OFFSET
0,3
COMMENTS
From Petros Hadjicostas, Sep 08 2019: (Start)
We generalize Daniel Suteu's recurrence from A212856. Notice first that, in the notation of Abramson and Promislow (1978), we have a(n) = R(m=7, n, t=0).
Letting y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978), we get 1 + Sum_{n >= 1} R(m,n,t=0)*x^n/(n!)^m = 1/f(-x), where f(x) = Sum_{i >= 0} (x^i/(i!)^m). Matching coefficients, we get Sum_{s = 1..n} R(m, s, t=0) * (-1)^(s-1) * binomial(n,s)^m = 1, from which the recurrence in the Formula section follows.
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..92 (terms n=1..19 from R. H. Hardin)
Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (8) on p. 249.
FORMULA
a(n) = (-1)^(n-1) + Sum_{s = 1..n-1} a(s) * (-1)^(n-s-1) * binomial(n,s)^m for n >= 2 with a(1) = 1. Here m = 7. - Petros Hadjicostas, Sep 08 2019
a(n) = (n!)^7 * [x^n] 1 / (1 + Sum_{k>=1} (-x)^k / (k!)^7). (see Petros Hadjicostas's comment on Sep 08 2019) - Seiichi Manyama, Jul 18 2020
EXAMPLE
Some solutions for n=3:
0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 2 1
1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0
1 0 2 2 1 0 2 0 1 0 1 2 2 0 1 1 0 2 1 2 0
0 2 1 1 0 2 0 2 1 1 0 2 0 1 2 2 0 1 0 1 2
2 0 1 2 1 0 1 0 2 2 1 0 1 2 0 0 1 2 1 2 0
2 1 0 0 1 2 1 0 2 0 1 2 2 0 1 1 0 2 2 1 0
1 2 0 2 1 0 0 1 2 0 2 1 2 1 0 2 0 1 2 0 1
MAPLE
A212860 := proc(n) sum(z^k/k!^7, k = 0..infinity);
series(%^x, z=0, n+1): n!^7*coeff(%, z, n); add(abs(coeff(%, x, k)), k=0..n) end:
seq(A212860(n), n=1..10); # Peter Luschny, May 27 2017
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[7, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 28 2012
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Jul 18 2020
STATUS
approved