[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).
20

%I #91 Aug 22 2024 20:34:54

%S 1,1,1,1,3,1,1,19,7,1,1,211,163,15,1,1,3651,8983,1135,31,1,1,90921,

%T 966751,271375,7291,63,1,1,3081513,179781181,158408751,7225951,45199,

%U 127,1,1,136407699,53090086057,191740223841,21855093751,182199871,275563,255,1

%N T(n,k) = number of n X k arrays with rows being permutations of 0..k-1 and no column j greater than column j-1 in all rows (n, k >= 1).

%C In other words, there are no "column rises", where a "column rise" means a pair of adjacent columns where each entry in the left column is strictly less than the adjacent entry in the right column.

%C This is R(n,k,0) in [Abramson-Promislow].

%C From _Petros Hadjicostas_, Sep 09 2019: (Start)

%C As stated above, in the notation of Abramson and Promislow (1978), we have T(n,k) = R(n, k, t=0).

%C Let P_k be the set of all lists a = (a_1, a_2, ..., a_k) of integers a_i >= 0, i = 1, ..., k, such that 1*a_1 + 2*a_2 + ... + k*a_k = k; i.e., P_k is the set all integer partitions of k. Then |P_k| = A000041(k).

%C From Eq. (6), p. 248, in Abramson and Promislow (1978), with t=0, we get T(n,k) = Sum_{a in P_k} (-1)^(k - Sum_{j=1..k} a_j) * (a_1 + a_2 + ... + a_k)!/(a_1! * a_2! * ... * a_k!) * (k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k))^n.

%C The integer partitions of k = 1..10 are listed on pp. 831-832 of Abramowitz and Stegun (1964). We see that, for k = 1..6, the corresponding multinomial coefficients k! / ((1!)^a_1 * (2!)^a_2 * ... * (k!)^a_k) are all distinct; that is, A070289(k) = A000041(k) and A309951(k,s) = A325305(k,s) for s = 0..A000041(k). For 7 <= k <= 10, this is not true anymore; i.e., A070289(k) < A000041(k) for 7 <= k <= 10 (and we conjecture that this is the case for all k >= 7).

%C From the theory of difference equations, we see that Abramson and Promislow's Eq. (6) on p. 248 (with t=0) implies that Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1. For k = 1..5, these recurrences give _R. H. Hardin_'s empirical recurrences shown in the Formula section below.

%C We also have Sum_{s = 0..A000041(k)} (-1)^s * A309951(k,s) * T(n-s,k) = 0 for n >= A000041(k) + 1, but for k >= 7, the recurrence we get (for column k) may not necessarily be minimal.

%C To derive the recurrence for row n, let y=0 in Eq. (8), p. 249, of Abramson and Promislow (1978). We get 1 + Sum_{k >= 1} T(n,k)*x^k/(k!)^n = 1/f_n(-x), where f_n(x) = Sum_{i >= 0} (x^i/(i!)^n). Matching coefficients, we get Sum_{s = 1..k} T(n,s) * (-1)^(s-1) * binomial(k,s)^n = 1, from which the recurrence in the Formula section follows.

%C (End)

%H Alois P. Heinz, <a href="/A212855/b212855.txt">Antidiagonals n = 1..45</a> (first 20 antidiagonals from R. H. Hardin)

%H Milton Abramowitz and Irene A. Stegun, <a href="http://www.cs.bham.ac.uk/~aps/research/projects/as/book.php">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</a>, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.

%H Morton Abramson and David Promislow, <a href="https://doi.org/10.1016/0097-3165(78)90012-2">Enumeration of arrays by column rises</a>, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554); see Eqs. (6) on p. 248 and (8) on p. 249 with t=0.

%H Yifei Li and Sheila Sundaram, <a href="https://arxiv.org/abs/2408.08421">Homology of Segre products of Boolean and subspace lattices</a>, arXiv:2408.08421 [math.CO], 2024. See p. 17.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem">Multinomial theorem</a>.

%F Empirical recurrence for column k:

%F k=1: a(n) = 1*a(n-1).

%F k=2: a(n) = 3*a(n-1) - 2*a(n-2).

%F k=3: a(n) = 10*a(n-1) - 27*a(n-2) + 18*a(n-3).

%F k=4: a(n) = 47*a(n-1) - 718*a(n-2) + 4416*a(n-3) - 10656*a(n-4) + 6912*a(n-5).

%F k=5: a(n) = 246*a(n-1) - 20545*a(n-2) + 751800*a(n-3) - 12911500*a(n-4) + 100380000*a(n-5) - 304200000*a(n-6) + 216000000*a(n-7).

%F [All the "empirical" recurrences above are correct. See the comments above.]

%F From _Benoit Jubin_, May 29 2012: (Start)

%F T(n,1) = T(1,n) = 1.

%F T(n,2) = 2^n - 1 since the only n X 2 matrix with rows permutations of {0,1} which has a column rise is the one where all rows are [0,1].

%F (k!)^n*(1 - (k-1)/2^n) <= T(n,k) <= (k!)^n (the first inequality is (11) in the Abramson-Promislow reference, the second is trivial). (End)

%F For r >= 1, A(n, r) = Sum_{k=0..n} |[x^k] n!^r [z^n] S(r, z)^x| where S(r, z) = Sum_{k>=0} z^k/k!^r. - _Peter Luschny_, Feb 27 2018

%F From _Petros Hadjicostas_, Sep 09 2019: (Start)

%F Recurrence for column k: Sum_{s = 0..A070289(k)} (-1)^s * A325305(k,s) * T(n-s,k) = 0 for n >= A070289(k) + 1.

%F Recurrence for row n: T(n,k) = (-1)^(k-1) + Sum_{s = 1..k-1} T(n,s) * (-1)^(k-s-1) * binomial(k,s)^n for k >= 1.

%F (End)

%F Sum_{k>=1} T(n,k)*z^k/(k!)^n = 1/E_n(-z) -1 where E_n(z) = Sum_{k>=0} z^k/(k!)^n. - _Geoffrey Critzer_, Apr 28 2023

%e Some solutions for n=3 and k=4:

%e 2 1 3 0 1 3 0 2 3 0 2 1 1 3 0 2 1 3 2 0

%e 2 0 1 3 1 3 0 2 3 1 2 0 1 0 3 2 1 3 0 2

%e 2 3 0 1 3 0 2 1 2 3 1 0 2 0 3 1 3 1 0 2

%e Table starts:

%e 1 1 1 1 1 1 1

%e 1 3 19 211 3651 90921 3081513

%e 1 7 163 8983 966751 179781181 53090086057

%e 1 15 1135 271375 158408751 191740223841 429966316953825

%e 1 31 7291 7225951 21855093751 164481310134301 2675558106868421881

%e 1 63 45199 182199871 2801736968751 128645361626874561 14895038886845467640193

%p A212855_row := proc(m,len) proc(n,m) sum(z^k/k!^m, k = 0..infinity);

%p series(%^x, z=0, n+1): n!^m*coeff(%,z,n); [seq(coeff(%,x,k),k=0..n)] end;

%p seq(add(abs(k), k=%(j,m)), j=1..len) end:

%p for n from 1 to 6 do A212855_row(n,7) od; # _Peter Luschny_, May 26 2017

%p # second Maple program:

%p T:= proc(n, k) option remember; `if`(k=0, 1, -add(

%p binomial(k, j)^n*(-1)^j*T(n, k-j), j=1..k))

%p end:

%p seq(seq(T(n, 1+d-n), n=1..d), d=1..10); # _Alois P. Heinz_, Apr 26 2020

%t rows = 9;

%t row[m_, len_] := Module[{p, s0, s1, s2}, p = Function[{n, m0}, s0 = Sum[ z^k/k!^m0, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n+1}] // Normal; s2 = n!^m0*Coefficient[s1, z, n]; Table[Coefficient[s2, x, k], {k, 0, n}]]; Table[Sum[Abs[k], {k, p[j, m]}], {j, 1, len}]];

%t T = Table[row[n, rows+1], {n, 1, rows}];

%t Table[T[[n-k+1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Feb 27 2018, after _Peter Luschny_ *)

%Y Cf. A000012 (row 1), A000275 (row 2), A212856 (row 3), A212857 (row 4), A212858 (row 5), A212859 (row 6), A212860 (row 7).

%Y Cf. A000012 (column 1), A000225 (column 2), A212850 (column 3), A212851 (column 4), A212852 (column 5), A212853 (column 6), A212854 (column 7).

%Y Cf. A000041, A070289 (order of minimal recurrence for column k), A192721, A212806 (main diagonal), A309951, A325305.

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, May 28 2012