[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212738
a(n) = (7^p - 6^p - 1)/(1806p) where p is the n-th prime.
1
1, 43, 81271, 3570505, 7025726485, 314435374639, 639872336584027, 60775577624897675065, 2794429652350970000851, 276858360603194024261113585, 600808083611945729624598396925, 28083738921571587634894783049047, 61728002094732427074308383210511683
OFFSET
3,2
COMMENTS
7^p - 6^p - 1 is divisible by 1806p = 6*7*43*p where p prime > 3 (see the proof with the general case).
The sequence is generalizable with the form a(n) = ((k^p - (k-1)^p - 1)) /(k*(k-1)*p*q) where p = prime(n), k integer such that q = k*(k-1) + 1 prime (q = A002383(n) with k = A055494(n)).
k*(k-1)*p*q divides k^p - (k-1)^p - 1, proof :
(1) p divides k^p - (k-1)^p - 1 (Fermat’s theorem)
(2) k*(k-1) divides k^p - (k-1)^p - 1
(3) q = k*(k-1) + 1 divides k^p - (k-1)^p - 1. Suppose k^p - (k-1)^p - 1 ==r (mod q). Then ((k-1)^p)*k^p - ((k-1)^p)*(k-1)^p - (k-1)^p ==r*(k-1)^p (mod q). But the first term is congruent to -1 (mod q), the second term is congruent to k^p (mod q) and the last term is congruent to (k-1)^p (mod q). We obtain r (mod q) = r*(k-1)^p (mod q) => r = 0.
LINKS
Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem A43.
MAPLE
with(numtheory): for n from 3 to 25 do:p:=ithprime(n):x:=(7^p - 6^p - 1)/(1806*p): printf(`%d, `, x):od:
PROG
(PARI) a(n)={my(p=prime(n)); (7^p - 6^p - 1)/(1806*p)} \\ Andrew Howroyd, Feb 25 2018
CROSSREFS
Sequence in context: A262648 A185558 A155477 * A291993 A228546 A125828
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 27 2012
STATUS
approved