[go: up one dir, main page]

login
A212705
a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, (2*n)^8).
2
54, 3220, 38794, 237832, 995710, 3256540, 8954258, 21645200, 47366982, 95758500, 181475866, 325939096, 559444366, 923676652, 1474657570, 2286163232, 3453646934, 5098701492, 7374096042, 10469422120, 14617383838
OFFSET
1,1
FORMULA
a(n) = 2/(2*n+1)*sum{i=1..n}tan^8(pi*i/(2*n+1)).
a(n) = 2/315*n*(1088*n^6+3808*n^5+3920*n^4+280*n^3-868*n^2+322n-45).
G.f.: 2*x*(27+1394*x+7273*x^2+7308*x^3+1373*x^4+34*x^5-x^6)/(1-x)^8. [Bruno Berselli, May 24 2012]
KEYWORD
nonn,easy,base
AUTHOR
STATUS
approved