[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212662
Numbers k for which k' = x' + y', where x > 0, k = x + y, and k', x', y' are the arithmetic derivatives of k, x, y.
6
3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 36, 39, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 82, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 116, 117, 120, 121, 123, 125, 126, 129, 132, 135, 138, 141, 144, 145
OFFSET
1,1
LINKS
EXAMPLE
k=24, x=8, y=16 and 24=8+16; k'=44, x'=12, y'=32 and 44=12+32.
In more than one way:
k=39, x=4, y=35 and 39=4+35; k'=16, x'=4, y'=12 and 16=4+12;
k=39, x=13, y=26 and 39=13+26; k'=16, x’=1, y'=15 and 16=1+15.
k=255, x=54, y=201 and 255=54+201; k'=151, x'=81, y'=70 and 16=4+12;
k=255, x=85, y=170 and 255=85+170; k'=151, x'=22, y'=129 and 16=1+15;
k=255, x=114, y=141 and 39=13+26; k'=151, x'=101, y'=50 and 16=1+15.
MAPLE
with(numtheory);
A212662:=proc(q)
local a, b, c, i, n, p, pfs;
for n from 1 to q do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);
for i from 1 to trunc(n/2) do
pfs:=ifactors(i)[2]; b:=i*add(op(2, p)/op(1, p), p=pfs);
pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2, p)/op(1, p), p=pfs);
if a=b+c then print(n); break; fi;
od;
od; end:
A212662(1000);
PROG
(PARI) ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ Michel Marcus, Aug 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 23 2012
STATUS
approved