[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211897
G.f.: exp( Sum_{n>=1} (2^n + (-1)^n)^n * x^n/n ).
1
1, 1, 13, 127, 21079, 5748277, 12575820727, 76137769800001, 2378969789430032869, 263966921383940194614823, 128008718415112846211347561597, 240383035701447602719960666753525867, 1863847508172945183054545696402414919578641
OFFSET
0,3
FORMULA
a(n) == 1 (mod 6).
EXAMPLE
G.f.: A(x) = 1 + x + 13*x^2 + 127*x^3 + 21079*x^4 + 5748277*x^5 +...
such that
log(A(x)) = x + 5^2*x^2 + 7^3*x^3 + 17^4*x^4 + 31^5*x^5 + 65^6*x^6 + 127^7*x^7 +...+ (2^n + (-1)^n)^n*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, (2^k+(-1)^k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A201040 A201550 A361068 * A147669 A076457 A227749
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 25 2012
STATUS
approved