[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211687
Number of -4..4 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having three distinct values for every i<=n and j<=n.
1
68, 156, 318, 604, 1144, 2108, 3924, 7236, 13486, 25108, 47168, 88856, 168588, 321220, 615390, 1184204, 2288040, 4438780, 8636484, 16862164, 32990542, 64729172, 127184496, 250474872, 493763644, 975154132, 1927138430, 3814135532
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 6*a(n-2) - 41*a(n-3) + 6*a(n-4) + 154*a(n-5) - 109*a(n-6) - 256*a(n-7) + 262*a(n-8) + 175*a(n-9) - 230*a(n-10) - 30*a(n-11) + 60*a(n-12).
Empirical g.f.: 2*x*(34 - 58*x - 357*x^2 + 592*x^3 + 1404*x^4 - 2231*x^5 - 2564*x^6 + 3806*x^7 + 2164*x^8 - 2860*x^9 - 668*x^10 + 704*x^11) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 5*x^2 + 5*x^4)). - Colin Barker, Jul 19 2018
EXAMPLE
Some solutions for n=5:
..2....1....0....0...-2....3...-4...-2...-2...-3...-1....1....0...-1....0....3
..0....2....2...-4....3....4....4....0...-1...-1....2....3...-2....1....4...-3
..2....1....0....2....1....3...-4....1....0....1....0....1....0....0...-4....0
..0....2...-2...-4....3....2....4....2....2...-1...-4...-2....2....1....0....3
.-4...-4....2....0...-2....3...-4....1....0....1....0....1...-2...-1....4....0
..4....2....0...-4....3....2....0....0...-1....3....2....3....2....0....0....3
CROSSREFS
Sequence in context: A044700 A063341 A118214 * A256023 A044400 A044781
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 18 2012
STATUS
approved