OFFSET
1,10
COMMENTS
Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018
FORMULA
With the definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(E_{i=1..k} 10).
= (x + x^10 + x^(10^10) + ...)/(1-x).
EXAMPLE
a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.
MATHEMATICA
a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
PROG
(PARI) a(n, i=1)={while(n=logint(n, 10), i++); i} \\ M. F. Hasler, Dec 07 2018
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Hieronymus Fischer, Apr 30 2012
EXTENSIONS
Name reworded by M. F. Hasler, Dec 12 2018
STATUS
approved