OFFSET
0,3
COMMENTS
LINKS
EXAMPLE
These are the first 24 finite permutations. The inversion sets interpreted as binary numbers on the right form the sequence A211362, which is not monotonic:
No. permutation inversion set A211362
00 1 2 3 4 0 0 0 0 0 0 0
01 2 1 3 4 1 0 0 0 0 0 1
02 1 3 2 4 0 0 1 0 0 0 4
03 3 1 2 4 1 1 0 0 0 0 3
04 2 3 1 4 0 1 1 0 0 0 6
05 3 2 1 4 1 1 1 0 0 0 7
06 1 2 4 3 0 0 0 0 0 1 32
07 2 1 4 3 1 0 0 0 0 1 33
08 1 4 2 3 0 0 1 0 1 0 20
09 4 1 2 3 1 1 0 1 0 0 11
10 2 4 1 3 0 1 1 0 1 0 22
11 4 2 1 3 1 1 1 1 0 0 15
12 1 3 4 2 0 0 0 0 1 1 48
13 3 1 4 2 1 0 0 1 0 1 41
14 1 4 3 2 0 0 1 0 1 1 52
15 4 1 3 2 1 1 0 1 0 1 43
16 3 4 1 2 0 1 1 1 1 0 30
17 4 3 1 2 1 1 1 1 1 0 31
18 2 3 4 1 0 0 0 1 1 1 56
19 3 2 4 1 1 0 0 1 1 1 57
20 2 4 3 1 0 0 1 1 1 1 60
21 4 2 3 1 1 1 0 1 1 1 59
22 3 4 2 1 0 1 1 1 1 1 62
23 4 3 2 1 1 1 1 1 1 1 63
This is the same list ordered by the inversion sets, so the right column is monotonic now. The left column is the beginning of the permutation p, i.e., this sequence:
No. permutation inversion set A211362*p
00 1 2 3 4 0 0 0 0 0 0 0
01 2 1 3 4 1 0 0 0 0 0 1
03 3 1 2 4 1 1 0 0 0 0 3
02 1 3 2 4 0 0 1 0 0 0 4
04 2 3 1 4 0 1 1 0 0 0 6
05 3 2 1 4 1 1 1 0 0 0 7
09 4 1 2 3 1 1 0 1 0 0 11
11 4 2 1 3 1 1 1 1 0 0 15
08 1 4 2 3 0 0 1 0 1 0 20
10 2 4 1 3 0 1 1 0 1 0 22
16 3 4 1 2 0 1 1 1 1 0 30
17 4 3 1 2 1 1 1 1 1 0 31
06 1 2 4 3 0 0 0 0 0 1 32
07 2 1 4 3 1 0 0 0 0 1 33
13 3 1 4 2 1 0 0 1 0 1 41
15 4 1 3 2 1 1 0 1 0 1 43
12 1 3 4 2 0 0 0 0 1 1 48
14 1 4 3 2 0 0 1 0 1 1 52
18 2 3 4 1 0 0 0 1 1 1 56
19 3 2 4 1 1 0 0 1 1 1 57
21 4 2 3 1 1 1 0 1 1 1 59
20 2 4 3 1 0 0 1 1 1 1 60
22 3 4 2 1 0 1 1 1 1 1 62
23 4 3 2 1 1 1 1 1 1 1 63
CROSSREFS
KEYWORD
AUTHOR
Tilman Piesk, Jun 03 2012
STATUS
approved