[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211325
Number of (n+1) X (n+1) -3..3 symmetric matrices with every 2 X 2 subblock having sum zero and two or three distinct values.
1
24, 58, 126, 274, 572, 1202, 2470, 5118, 10466, 21560, 44066, 90582, 185338, 380818, 780392, 1604082, 3292390, 6772414, 13921038, 28660928, 58993382, 121571918, 250540314, 516800746, 1066237980, 2201452066, 4546640338, 9396025014
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 22*a(n-3) - 11*a(n-4) + 58*a(n-5) + 4*a(n-6) - 65*a(n-7) + 5*a(n-8) + 28*a(n-9) - 2*a(n-10) - 4*a(n-11).
Empirical g.f.: 2*x*(12 - 7*x - 96*x^2 + 38*x^3 + 267*x^4 - 70*x^5 - 307*x^6 + 57*x^7 + 141*x^8 - 14*x^9 - 22*x^10) / ((1 - 2*x)*(1 + x - x^2)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x - 3*x^2 + x^3 + x^4)). - Colin Barker, Jul 16 2018
EXAMPLE
Some solutions for n=3:
..1..1..1.-1....3.-1..2.-1....0..1..1..1...-1..0.-1..0....1..0..2..0
..1.-3..1.-1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
..1..1..1.-1....2..0..1..0....1..0..2..0...-1..0.-1..0....2.-1..3.-1
.-1.-1.-1..1...-1.-1..0.-1....1.-2..0.-2....0..1..0..1....0.-1.-1.-1
CROSSREFS
Sequence in context: A232937 A190104 A255968 * A290303 A044126 A044507
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 07 2012
STATUS
approved