Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 07 2023 08:22:42
%S 2,7,9,15,15,21,21,27,35,33,43,45,45,51,59,65,63,73,75,75,85,87,95,
%T 105,105,105,111,111,117,141,135,143,141,159,153,163,169,171,179,185,
%U 183,201,195,201,201,223,235,231,231,237,245,243,261,263,269,275,273,283,285,285,303,321,315,315,321,345,343,357,351,357,365,375,379
%N Numerator of prime(n+1) - prime(n)/2.
%C Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268.
%C The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1.
%C a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4.
%F a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - _Charles R Greathouse IV_, Jul 10 2012
%F a(n) = prime(n+2) - A036263(n), n>1. - _R. J. Mathar_, Jul 10 2012
%p A211280 := proc(n)
%p ithprime(n+1)-ithprime(n)/2 ;
%p numer(%) ;
%p end proc: # _R. J. Mathar_, Jul 10 2012
%t Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]],2,1] (* _Harvey P. Dale_, Mar 05 2023 *)
%Y Denominators are A040000.
%K nonn,easy,frac
%O 1,1
%A _Paul Curtz_, Jul 05 2012