[go: up one dir, main page]

login
A211027
Triangle of binary numbers >= 1 with no initial repeats.
6
1, 10, 100, 101, 1000, 1001, 1011, 10000, 10001, 10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100101, 100110, 100111, 101100, 101110, 101111, 1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111, 1001010, 1001011, 1001100, 1001101, 1001110, 1001111, 1011000, 1011001, 1011100, 1011101, 1011110, 1011111
OFFSET
1,2
COMMENTS
Triangle read by rows in which row n lists the binary numbers with n digits and with no initial repeats.
Also triangle read by rows in which row n lists the binary words of length n with no initial repeats and with initial digit 1. See also A211029.
EXAMPLE
Triangle begins:
1;
10;
100, 101;
1000, 1001, 1011;
10000, 10001, 10010, 10011, 10110, 10111;
100000, 100001, 100010, 100011, 100101, 100110, 100111, 101100, 101110, 101111;
1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111, 1001010, 1001011, 1001100, 1001101, 1001110, 1001111, 1011000, 1011001, 1011100, 1011101, 1011110, 1011111;
MAPLE
s:= proc(n) s(n):= `if`(n=1, [[1]], map(x->
[[x[], 0], [x[], 1]][], s(n-1))) end:
T:= proc(n) map(x-> parse(cat(x[])), select(proc(l) local i;
for i to iquo(nops(l), 2) do if l[1..i]=l[i+1..2*i]
then return false fi od; true end, s(n)))[] end:
seq(T(n), n=1..7); # Alois P. Heinz, Dec 02 2012
MATHEMATICA
T[n_] := If[n == 1, {1}, FromDigits /@ Select[Range[2^(n-1), 2^n-2] // IntegerDigits[#, 2]&, FindTransientRepeat[Reverse[#], 2][[2]] == {}&]];
Array[T, 7] // Flatten (* Jean-François Alcover, Feb 27 2021 *)
CROSSREFS
Column 1 is A011557. Row n has length A093371(n).
Sequence in context: A037415 A123001 A014417 * A328072 A185101 A007924
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 30 2012
STATUS
approved