[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210501
Number of odd solutions to phi(k) = prime(n) - 1.
4
1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 4, 1, 1, 6, 1, 1, 2, 4, 2, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 5, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 10, 1, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 6, 1, 1, 5, 1, 3, 3, 1, 1, 1, 1, 1, 1, 6, 4, 2, 1, 6, 1, 11, 1, 1, 3
OFFSET
1,4
COMMENTS
a(n) <= A210500(n).
REFERENCES
Alexander S. Karpenko, Lukasiewicz's Logics and Prime Numbers, Luniver Press, Beckington, 2006, pp. 52-56.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = A058339(n) - A210500(n).
EXAMPLE
The set {k: phi(k) = 12} is {13, 21, 26, 28, 36, 42}. Thus, if phi(k) = prime(6) - 1, the equation has exactly two odd solutions. Hence, a(6) = 2.
MATHEMATICA
r = 87; lst1 = Table[EulerPhi[n], {n, (Prime[r] - 1)^2 + 1}]; lst2 = {}; Do[p = Prime[n]; AppendTo[lst2, Length@Select[Flatten@Position[Take[lst1, {p - 1, (p - 1)^2 + 1}], Prime[n] - 1], EvenQ]], {n, r}]; lst2
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved