[go: up one dir, main page]

login
A219761
a(1) = 1; for n>1, a(n) = smallest integer > a(n-1) such that a(n)*a(n-i)+1 is prime for all 0 <= i <= n-1.
2
1, 2, 6, 156, 4260, 117306, 160650, 13937550, 32742516, 3306719796, 7746764190
OFFSET
1,2
REFERENCES
Rainer Rosenthal, Posting to Sequence Fans Mailing List, Nov 30 2012.
EXAMPLE
After a(1)=1, a(2)=2, a(3)=6, we want the smallest m>6 such that 1+m, 1+2m, 1+6m and 1+m^2 are all prime: this is m = 156 = a(4).
MATHEMATICA
f[a_List] := Block[{m = a, k = a[[-1]] + 6}, While[ Union@ PrimeQ[k*Join[m, {k}] + 1] != {True}, k += 6]; k]; s = {1, 2, 6}; Do[ Print[{n, a = f[s]}]; s = Append[s, a], {n, 4, 9}] (* Robert G. Wilson v, Dec 03 2012 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 01 2012
EXTENSIONS
a(8) and a(9) from Robert G. Wilson v, Dec 03 2012
a(10) and a(11) from Robert G. Wilson v, Dec 04 2012
STATUS
approved