[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218168
G.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.
2
1, 1, 2, 5, 16, 77, 630, 7956, 132480, 2664389, 62140078, 1643056625, 48503833280, 1580192424580, 56292381309608, 2176251789724500, 90726545080501440, 4056755120695005717, 193649641793538259950, 9828338731644277922679, 528459404673048692682384
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x)^3 = A(x)^2 + x*A(x) + 3*x^2*A'(x).
a(n) ~ c * 3^n * n! / n^2, where c = 0.0220701841954367321830819129913... - Vaclav Kotesovec, Aug 24 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 77*x^5 + 630*x^6 + 7956*x^7 +...
Related expansions:
A'(x) = 1 + 4*x + 15*x^2 + 64*x^3 + 385*x^4 + 3780*x^5 + 55692*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 46*x^4 + 206*x^5 + 1503*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 96*x^4 + 414*x^5 + 2735*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 173*x^4 + 736*x^5 + 4486*x^6 +...
d/dx x*A(x)^3 = 1 + 6*x + 27*x^2 + 112*x^3 + 480*x^4 + 2484*x^5 +...
where A(x) = 1 + x*[d/dx x*A(x)^3]/A(x)^4.
1/A(x) = 1 - x - x^2 - 2*x^3 - 7*x^4 - 45*x^5 - 468*x^6 - 6624*x^7 -...
A'(x)/A(x)^2 = 1 + 2*x + 6*x^2 + 28*x^3 + 225*x^4 + 2808*x^5 +...
where A(x) = 1 + x/A(x) + 3*x^2*A'(x)/A(x)^2.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(x*A^3)/(A+x*O(x^n))^4); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A121396 A371829 A263914 * A054960 A004110 A236960
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2013
STATUS
approved