[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218102
O.g.f. satisfies: A(x) = Sum_{n>=0} (n+1)^(n-1) * (n*x)^n * A(n*x)^n/n! * exp(-(n+1)*n*x*A(n*x)).
3
1, 1, 5, 63, 1319, 40559, 1740041, 102534291, 8332829935, 944126513627, 150312711346533, 33728725902552987, 10685563629182909359, 4790986916169721578103, 3046269113896919000444225, 2750105392841508250133575939, 3528869100728541732126472203599
OFFSET
0,3
COMMENTS
Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
EXAMPLE
O.g.f.: A(x) = 1 + x + 5*x^2 + 63*x^3 + 1319*x^4 + 40559*x^5 +...
where
A(x) = 1 + 2^0*1^1*x*A(x)*exp(-2*1*x*A(x)) + 3^1*2^2*x^2*A(2*x)^2*exp(-3*2*x*A(2*x))/2! + 4^2*3^3*x^3*A(3*x)^3*exp(-4*3*x*A(3*x))/3! + 5^3*4^4*x^4*A(4*x)^4*exp(-5*4*x*A(4*x))/4! + 6^4*5^5*x^5*A(5*x)^5*exp(-6*5*x*A(5*x))/5! +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, (k+1)^(k-1)*k^k*x^k*subst(A, x, k*x)^k/k!*exp(-(k+1)*k*x*subst(A, x, k*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A361406 A355411 A334907 * A306763 A275763 A004193
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved