OFFSET
0,3
COMMENTS
Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (2*n+1)^(n-1) * exp(-(2*n+1)*x) * x^n/n!.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..315
FORMULA
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (2*k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^(k-1)*x^k / (1 + k*(2*k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1 - 2*k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1 - (2*k+1)*x).
a(n) ~ 2^(3*n-9/4) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/4)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 22 2014
EXAMPLE
O.g.f.: A(x) = 1 + x + 7*x^2 + 125*x^3 + 3641*x^4 + 148297*x^5 + 7792275*x^6 +...
where
A(x) = 1 + 1^1*3^0*x*exp(-1*3*x) + 2^2*5^1*exp(-2*5*x)*x^2/2! + 3^3*7^2*exp(-3*7*x)*x^3/3! + 4^4*9^3*exp(-4*9*x)*x^4/4! + 5^5*11^4*exp(-5*11*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-1, j]*2^j*StirlingS2[n+j, n], {j, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 22 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k*exp(-k*(2*k+1)*x+x*O(x^n))/k!), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=1/n!*polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}
(PARI) {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k^n*(2*k+1)^(n-1))}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-2*k*x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(2*k+1)*x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2012
STATUS
approved